

Grundwissen · Klasse 6

erstellt von A. Bönning

Die Menge Q der rationalen Zahlen

Die Menge $\mathbb Q$ der rationalen Zahlen enthält alle Zahlen, die als Bruch dargestellt werden können.

Man unterscheidet dabei Dezimalbrüche und Brüche.

Ein Bruch kann als echter, unechter oder gemischter Bruch auftreten:

Echter Bruch: Zähler < Nenner, z. B. $\frac{6}{7}$ Unechter Bruch: Zähler > Nenner, z. B. $\frac{5}{4}$ Ein unechter Bruch kann in einen **gemischten Bruch** umgewandelt werden, der aus einer ganzen Zahl und einem echten Bruch besteht, z. B. $\frac{31}{9} = 3 \cdot \frac{4}{9} = \frac{3 \cdot 9 + 4}{9}$

Erweitern:

Zähler und Nenner werden mit der gleichen Zahl multipliziert.

Zähler und Nenner werden durch die gleiche Zahl dividiert.

Rechnen in Q

		Brüche ⇒ Dezimalbrüche	Dezimalbrüche ⇒ Brüche	
	Umwandeln	Erweitere den Bruch so, dass im Nenner eine Stufenzahl (10, 100,) steht. Schreibe danach den Zähler auf und setze das Komma so, dass die Zahl so viele Dezimalen (Nachkommastellen) hat, wie die Stufenzahl des Nenners Nullen besitzt.	endliche Dezimalbrüche (①): Schreibe in den Zähler die Zahl ohne Komma und in den Nenner die Stufenzahl, die so viele Nullen hat, wie es Dezimalen gibt. periodische Dezimalbrüche (②): Schreibe in den Zähler die Periode und in den Nenner so viele Neunen, wie die Periode Stellen hat. *	
В	Beispiele	① $\frac{3}{8} = \frac{3 \cdot 125}{8 \cdot 125} = \frac{375}{1000} = 0,375$ ② $\frac{5}{4} = \frac{5 \cdot 25}{4 \cdot 25} = \frac{125}{100} = 1,25$	① $3,42 = \frac{342}{100} = \frac{81}{25}$ ② $0,\overline{102} = \frac{102}{999}$	

^{*} Diese Regel gilt nur, wenn die Periode sofort nach dem Komma beginnt!

erstellt von A. Bönning

Rechnen in $\mathbb Q$

		Brüche	Dezimalbrüche
	Addition und Subtraktion	Erweitere die Brüche zuerst so, dass sie den gleichen Nenner haben (kgV). Addiere bzw. sub- trahiere danach die Zähler. Der Nenner ändert sich nicht.	Bringe die Dezimalbrüche durch Anhängen von Endnullen auf gleich viele Dezimalen. Addiere bzw. subtrahiere danach die einzelnen Ziffern stellenweise.
	Beispiele	① $\frac{1}{12} + \frac{1}{3} = \frac{1}{12} + \frac{4}{12} = \frac{5}{12}$ ② $\frac{4}{5} - \frac{3}{8} = \frac{32}{40} - \frac{15}{40} = \frac{17}{40}$	① Ezh Ezh Ezh 4,85 + 3,12 = 7,97 ② ZEzht Ezht ZEzht 12,039 - 1,500 = 10,539
	Multiplikation	Multipliziere den Zähler mit dem Zähler und den Nenner mit dem Nenner. Jede ganze Zahl kann dabei als Bruch mit dem Nenner 1 dargestellt werden!	Multipliziere die beiden Dezi- malbrüche zuerst ohne Komma. Setze danach das Komma so, dass das Ergebnis so viele Stellen nach dem Komma hat, wie beide Faktoren zusammen.
	Beispiele	③ $\frac{5}{9} \cdot \frac{2}{3} = \frac{5 \cdot 2}{9 \cdot 3} = \frac{10}{27}$ ④ $2 \cdot \frac{3}{7} = \frac{2 \cdot 3}{1 \cdot 7} = \frac{6}{7}$	③ $3,8 \cdot 2,\frac{1}{1} = 7,98$ ④ $1,72 \cdot 6,4 = 11,008$ 3
	Division	Dividiere einen Bruch durch einen zweiten Bruch, indem du den ersten mit dem Kehrwert des zweiten Bruches multiplizierst. Kürze stets soweit wie möglich!	Verschiebe das Komma bei beiden Zahlen um so viele Stellen nach rechts, dass der Divisor eine ganze Zahl ist. Beim Überschreiten des Kommas wird im Ergebnis das Komma gesetzt.
	Beispiele		⑤ 2,41:0,5 = 24,1:5 = 4,82 ⑥ 6,2:0,08 = 620:8 = 77,5

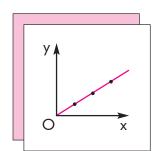
erstellt von A. Bönning

Direkte Proportionalität

Eine Zuordnung x → y nennt man direkt proportional, wenn gilt: Vervielfacht sich die Größe x um das n-fache, so vervielfacht sich auch die Größe y um das n-fache (man schreibt: $x \sim y$).

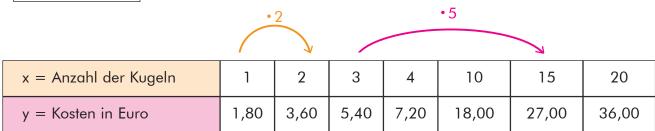
Eigenschaften:

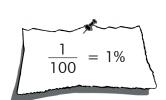
- Alle Zahlenpaare (x|y) sind **quotientengleich**.
- Der konstante Quotient $k = \frac{y}{x}$ heißt **Proportionalitätskonstante**.
- Alle Punkte liegen auf einer Halbgeraden, die im Ursprung beginnt.

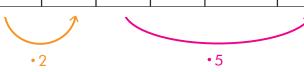


Beispiel

Eine Kugel Eis kostet 1,80 Euro.







Prozentrechnung

Von 25 Kindern einer Schulklasse können 20 schwimmen. Das sind 80% der Klasse.

$$GW = \frac{PW \cdot 100}{p}$$

$$PW = \frac{GW \cdot p}{100}$$

$$p = \frac{PW \cdot 100}{GW}$$

Aufgaben zur Prozentrechnung lassen sich über die Formel, die Quotientengleichheit und über den Dreisatz lösen.

Beispiel:

Von 20 Kindern sind 9 Mädchen. Wie viel Prozent sind das?

Antwort: Das sind 45%.

20 $\hat{=}$ 100%

1 ² 5%

9 $\stackrel{\triangle}{=}$ **45**%

Grundwissen • Klasse 6

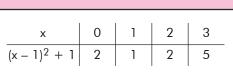
4

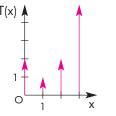
erstellt von A. Bönning

Terme

- Die Platzhalter für Zahlen heißen **Variable** (z. B. x; y; a; ○; □; ...).
- Jede Zahl, jede Variable und jede sinnvolle Verknüpfung aus Zahlen, Rechenzeichen sowie Variablen bezeichnet man als **Term** (Beispiele: 7x + 5; $y^2 - 5$).
- Die Menge von Zahlen, die für die Variable eingesetzt werden dürfen, ist die **Grundmenge G**.
- Wird die Variable eines Terms mit Werten aus der Grundmenge belegt, so erhält man Termwerte.
- Terme sind \ddot{a} quivalent, wenn sie bei allen Einsetzungen aus G die gleichen Termwerte haben.
- Terme, die sich nur in ihrem Koeffizienten (Zahlfaktor vor der Variablen) unterscheiden, nennt man gleichartig (Beispiel: 7x und 5x sind gleichartig; 4x und 2y sind nicht gleichartig).

Beispiel $T(x) = (x - 1)^2 + 1$ in $\mathbb{G} = \{0; 1; 2; 3\}$ Numerische Wertetabelle





Gleichungen und Ungleichungen

- Verbindet man zwei Terme durch das Gleichheitszeichen, so erhält man eine Gleichung.
- Alle richtigen Einsetzungen für die Variable ergeben die Lösungsmenge L der Gleichung.
- Erfüllen alle Elemente der Grundmenge die Gleichung, so ist diese allgemein gültig (L = G).
- Erfüllt kein Element der Grundmenge die Gleichung, so ist diese nicht lösbar. Die Lösungsmenge ist leer ($\parallel = \emptyset$).
- Gleichungen, die bei gleicher Grundmenge dieselbe Lösungsmenge haben, heißen äquivalent.

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn man ...

- ... auf beiden Seiten die gleiche Zahl addiert oder subtrahiert.
- ... beide Seiten mit der gleichen Zahl (≠ 0) multipliziert oder dividiert.

Diese Umformungen einer Gleichung heißen Äquivalenzumformungen.

Beispiele

①
$$6x = 18 \mid :6$$

$$\Leftrightarrow x = 3$$

$$\mathbf{L} = \{3\}$$

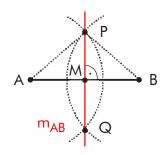
2
$$x-5 = 21 | +5$$

 $\Rightarrow x = 26$

erstellt von A. Bönning

Mittelsenkrechte und Winkelhalbierende

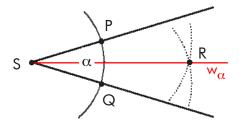
Jeder Punkt auf der **Mittelsenkrechten** m_{AB} ist von den Punkten A und B gleich weit entfernt.



Konstruktion

- Zeichne um die beiden Punkte A und B Kreise mit dem gleichen Radius r, wobei gilt: r > 0,5 • AB
- Zeichne eine Gerade durch die beiden Schnittpunkte P und Q der Kreise.

Jeder Punkt auf der **Winkelhalbierenden** w_{α} hat von den Schenkeln den gleichen Abstand.

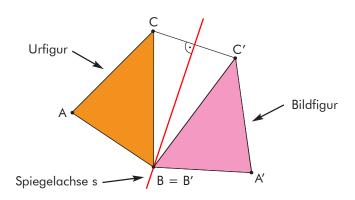


- Zeichne um den Scheitel S des Winkels einen Kreis. Dieser schneidet die beiden Schenkel in den Punkten P und Q.
- Zeichne um die Punkte P und Q je einen Kreis mit dem gleichen Radius.
- Verbinde den Schnittpunkt R der beiden Kreise mit dem Scheitel S.

Achsenspiegelung

Wird einer Urfigur durch Spiegelung an einer Geraden s genau eine Bildfigur zugeordnet, so handelt es sich bei der Abbildung um eine Achsenspiegelung.

Man schreibt: ABC ├── s A'B'C'



Eigenschaften

- Urfigur und Bildfigur liegen symmetrisch zur Spiegelachse s.
- Die Verbindungsstrecken vom Urpunkt zum Bildpunkt stehen senkrecht auf der Spiegelachse s
 und werden von ihr halbiert.
- Die Achsenspiegelung ist eine Kongruenzabbildung, d. h. Ur- und Bildfigur sind deckungsgleich.
- Die Achsenspiegelung ist längen- und winkeltreu, sowie geraden- und kreistreu.
- Die Spiegelachse s besteht nur aus Fixpunkten, d. h. aus Punkten, die auf sich selbst abgebildet werden. Sie ist eine **Fixpunktgerade**.
- Alle zur Spiegelachse senkrechten Geraden und die Spiegelachse selbst sind **Fixgeraden**, d. h. Geraden, die auf sich selbst abgebildet werden.

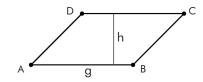
Grundwissen • Klasse 6

6

erstellt von A. Bönning

Flächeninhalt ebener Figuren

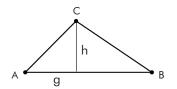
Parallelogramm



A = Grundlinie g · Höhe h*

(* zwei mögliche Höhen)

Dreieck



A = 0,5 · Grundlinie g · Höhe h*

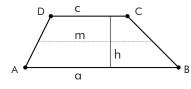
(* drei mögliche Höhen)

 $\begin{array}{l} Parallelogramm \ ABCD \\ mit \ \overline{|AB|} \ = \ 7 \ cm \ und \ h_{AB} \ = \ 5 \ cm \end{array}$

 $A = 7 \cdot 5 \text{ cm}^2 = 35 \text{ cm}^2$

 $A = 0.5 \cdot 6 \cdot 4 \text{ cm}^2 = 12 \text{ cm}^2$

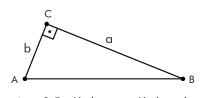
apez



A = Mittellinie m* · Höhe h

* $m = 0.5 \cdot (Grundlinie a + Grundlinie c)$

rechtwinkliges Dreieck



A = 0.5 • Kathete a • Kathete b

Kathete: liegt am 90°-Winkel an

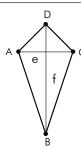
Trapez ABCD mit |AB| = 4 cm, |CD| = 2cm und $h_{AB} = 8$ cm

 $A = 0.5 \cdot (4 + 2) \cdot 8 \text{ cm}^2 = 24 \text{ cm}^2$

Dreieck ABC mit |BC| = 7 cm und |AC| = 2 cm

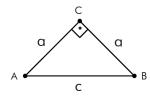
 $A = 0.5 \cdot 7 \cdot 2 \text{ cm}^2 = 4.5 \text{ cm}^2$

Drachenviereck Raute



 $A = 0.5 \cdot Diagonale e \cdot Diagonale f$

gleichschenkliges, echtwinkliges Dreieck



 $A = 0.5 \cdot Kathete a^2$

 $A = 0.25 \cdot Hypothenuse c^2$

Hypothenuse: liegt dem 90°-Winkel gegenüber

Drachenviereck ABCD mit |AC| = 5 cm und |BD| = 7 cm

 $A = 0.5 \cdot 5 \cdot 7 \text{ cm}^2 = 17.5 \text{ cm}^2$

Dreieck ABC mit $|\overline{AB}| = 8 \text{ cm}$ $A = 0.25 \cdot 8^2 \text{ cm}^2 = 16 \text{ cm}^2$ Dreieck ABC mit $|\overline{AC}| = 5 \text{ cm}$ $A = 0.5 \cdot 5^2 \text{ cm}^2 = 12.5 \text{ cm}^2$

Grundwissen · Klasse 6

erstellt von A. Bönning

Achsensymmetrische Figuren

Quadrat	Rechteck	Drachenviereck	Raute
	gleichschenkliges Dreieck	gleichseitiges Dreieck	gleichschenkliges Trapez

Raumgeometrie

c Quader

Oberfläche:
$$O = 2 \cdot (a \cdot b + b \cdot c + a \cdot c)$$

Volumen: $V = a \cdot b \cdot c$

Würfel

$$O = 6 \cdot \alpha \cdot \alpha = 6 \cdot \alpha^2$$

$$V = a \cdot a \cdot a = a^3$$

FE = Flächeneinheiten

VE = Volumeneinheiten

Kubik	$1 \text{ m}^3 = 1000 \text{ dm}^3$ $1 \text{ dm}^3 = 1000 \text{ cm}^3$ $1 \text{ cm}^3 = 1000 \text{ mm}^3$	m ³ : "Kubikmeter" dm ³ : "Kubikdezimeter" cm ³ : "Kubikcentimeter" mm ³ : "Kubikmillimeter"
Liter	1 hl = 100 l 1 l = 10 dl 1 dl = 10 cl 1 cl = 10 ml	hl: "Hektoliter" l: "Liter" dl: "Deziliter" cl: "Centiliter" ml: "Milliliter"
	Merke: 1 dm ³ = 1 l	.E = Längeneinheiten

Abkürzungen